发布时间:2016-12-29 09:20 我来说说 我要投稿
尺规作图,是中考的高频考点,难度不大,但是细节却容易出错,数姐整理了这些技巧给大家,这样,大家再也不用担心几何了!
一、基本概念
1.尺规作图:在几何里,用没有刻度的直尺和圆规来画图,叫做尺规作图.
2.基本作图:最基本、最常用的尺规作图,通常称基本作图.
3.五种常用的基本作图:
(1)作一条线段等于已知线段;
(2)作一个角等于已知角;
(3)平分已知角;
(4)作线段的垂直平分线.
(5)经过一点作已知直线的垂线
4.掌握以下几何作图语句:
(1)过点×、点×作直线××;或作直线××,或作射线××;
(2)连结两点×、×;或连结××;
(3)在××上截取××=××;
(4)以点×为圆心,××为半径作圆(或弧);
(5)以点×为圆心,××为半径作弧,交××于点×;
(6)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点××;
(7)延长××到点×,或延长××到点×,使××=××.
5.学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述就可以了,如:
(1)作线段××=××;
(2)作∠×××=∠×××;
(3)作××(射线)平分∠×××;
(4)过点×作××⊥××,垂足为×;
(5)作线段××的垂直平分线××.
二:五种基本作图方法演示:
尺规作图的基本步骤和作图语言
一、作线段等于已知线段
已知:线段a
求作:线段AB,使AB=a
作法:
1、作射线AC
2、在射线AC上截取AB=a ,则线段AB就是所要求作的线段
二、作角等于已知角
已知:∠AOB
求作:∠A′O′B′,使∠A′O′B′=∠AOB.
作法:
(1)作射线O′A′.
(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D.
(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′.
(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′.
(5)过点D′作射线O′B′.∠A′O′B′就是所求作的角.
三、作角的平分线
已知:∠AOB,
求作:∠AOB内部射线OC,使:∠AOC=∠BOC,
作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.
(2)分别以D、E为圆心,大于
的长为半径作弧,在∠AOB内,两弧交于点C.
(3)作射线OC.OC就是所求作的射线.
四、作线段的垂直平分线(中垂线)或中点
已知:线段AB
求作:线段AB的垂直平分线
作法:(1)分别以A、B为圆心,以大于AB的一半为半径在AB两侧画弧,分别相交于E、F两点
(2)经过E、F,作直线EF(作直线EF交AB于点O)直线EF就是所求作的垂直平分线(点O就是所求作的中点)
五、过直线外一点作直线的垂线.
(1)已知点在直线外
已知:直线a、及直线a外一点A.(画出直线a、点A)
求作:直线a的垂线直线b,使得直线b经过点A.
作法:(1)以点A为圆心,以适当长为半径画弧,交直线a于点C、D.
(2)以点C为圆心,以AD长为半径在直线另一侧画弧.
(3)以点D为圆心,以AD长为半径在直线另一侧画弧,交前一条弧于点B.
(4)经过点A、B作直线AB.直线AB就是所画的垂线b.(如图)
(2)已知点在直线上
已知:直线a、及直线a上一点A.
求作:直线a的垂线直线b,使得直线b经过点A.
作法:(1)以A为圆心,任一线段的长为半径画弧,交a于C、B两点
(2)点C为圆心,以大于CB一半的长为半径画弧;
(3)以点B为圆心,以同样的长为半径画弧,两弧的交点分别记为M、N
(4)经过M、N,作直线MN直线MN就是所求作的垂线b
常用的作图语言:
(1)过点×、×作线段或射线、直线;
(2)连结两点××;
(3)在线段××或射线××上截取××=××;
(4)以点×为圆心,以××的长为半径作圆(或画弧),交××于点×;
(5)分别以点×,点×为圆心,以××,××的长为半径作弧,两弧相交于点×;
(6)延长××到点×,使××=××。
二:作图题说明
在作图中,有属于基本作图的地方,写作法时,不必重复作图的详细过程,只用一句话概括叙述就可以了。
(1)作线段××=××;
(2)作∠×××=∠×××;
(3)作××(射线)平分∠×××;
(4)过点×作××⊥××,垂足为点×;
(5)作线段××的垂直平分线××
更多内容关注初中数学微信公众号!
《初中数学五种作图基本概念及技巧》由河南新闻网-豫都网提供,转载请注明出处:http://edu.yuduxx.com/sxks/zk/529833.html,谢谢合作!
豫都网版权与免责声明
1、未经豫都网(以下简称本网)许可,任何人不得非法使用本网自有版权作品。
2、本网转载其他媒体之稿件,以及由用户发表上传的作品,不代表本网赞同其观点和对其真实性负责。
3、如因作品版权和其它问题可联系本网,本网确认后将在24小时内移除相关争议内容。