豫都网 > 教育频道 > 升学考试 > 中考 >

吴国平:数学成绩一直不好,主要是这两方面出问题

[摘要]一、 欠缺 心算、口算能力,思维 不够活跃 我们知道心算、口算是指能不动笔的前提下,把数学问题解决,提高数学运用法则的能力。因此,很多时候心算、口算是思维灵敏性、敏捷性一种外在表现形式。 很多数学学习成绩薄弱的学生,心算、口算能力也表现出以下几...

  

  一、欠缺心算、口算能力,思维不够活跃

  我们知道心算、口算是指能不动笔的前提下,把数学问题解决,提高数学运用法则的能力。因此,很多时候心算、口算是思维灵敏性、敏捷性一种外在表现形式。

  很多数学学习成绩薄弱的学生,心算、口算能力也表现出以下几个方面欠缺:

  1、容易半途而废;

  2、拖延症严重,没有时间观念;

  3、学习漫无目的,翻哪做哪。

  二、不会运用数学思想运用解决数学问题

  数学学习成绩薄弱的学生很大一个特点就是“学的很累”,拼命做题、解题等等,但数学成绩就是不见进步。究其原因就是“不会运用数学思想运用解决数学问题”。

  数学思想是对数学知识的本质认识,是从某些具体的数学内容和对数学的认识中锻炼上升的数学观点,它在认识活动中被反复运用,带有普遍指导意义,是建立数学和用数学解决问题的指导思想。如,数学形结合思想、化归思想、极限思想、分类思想等。

  数学解题要学会运用数学思想方法,从题目条件出发,看某个条件能否得出什么,得出的越多越好,然后从中选择与其它条件有关的、或与结论有关的、或与题目中的隐含条件有关的,进行推理或演算。数学解题一定要利用题目中的条件,加上自己学过的知识,就一定能推出正确的结论。

  典型例题:

  

  

  

  解题反思:

  1.解决圆锥曲线的最值与范围问题常见的解法有两种:几何法和代数法.

  (1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;

  (2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.

  2.在利用代数法解决最值与范围问题时常从以下五个方面考虑:

  (1)利用判别式来构造不等关系,从而确定参数的取值范围;

  (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;

  (3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;

  (4)利用基本不等式求出参数的取值范围;

  (5)利用函数的值域的求法,确定参数的取值范围.

  一道数学题都跟某一类题之间存在着一定的共性,我们要学会从一道题目中提炼学习方法,学会从一类题中提炼解题思路和解题方法。


《吴国平:数学成绩一直不好,主要是这两方面出问题》河南新闻-豫都网提供,转载请注明出处:http://edu.yuduxx.com/sxks/zk/489223.html,谢谢合作!

[责任编辑:admin]
下一篇:没有了 上一篇:从学渣到学霸,逆袭就是这么简单!

我要评论

评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)

豫都网版权与免责声明

1、未经豫都网(以下简称本网)许可,任何人不得非法使用本网自有版权作品。

2、本网转载其他媒体之稿件,以及由用户发表上传的作品,不代表本网赞同其观点和对其真实性负责。

3、如因作品版权和其它问题可联系本网,本网确认后将在24小时内移除相关争议内容。

详细声明请点击进入>>

返回豫都网首页
版权所有: 豫都网 Copyright(c) 2010-2015 YuDuWang Network Center. All Rights Reserved 豫ICP备13014680号
若无意侵犯了贵司版权,请来信通知,我们会及时处理和回复,谢谢!邮箱:admin@yuduxx.com
未经豫都网书面特别授权,请勿转载或建立镜像 违者依法追究相关法律责任
地图 地图 地图 地图 地图 地图 地图 地图 地图 地图 地图 地图 地图